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ABSTRACT

In this article, we establish that the gravitational and electromagnetic fields have a consubstantial
nature, and obtain expressions for the description electromagnetic-gravitational field in Y* space.
The applied approach can be described as follows. First, we developed Eddington's ideas to obtain an
analog of Maxwell’s theory in Y* interpreted the symmetric terms as metric the antisymmetric part
as an electromagnetic field. Then, the antisymmetric part is studied as an electromagnetic field,
finally, the Weyl theory is introduced to determine the geometrical structure of the world by applying
the Weyl assumption about partitionbetween geometry and electricity.
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INTRODUCTION

After the theory of general relativity was developed between 1907 and 1920 arose a problem of
unification of the gravitational and electromagnetic fields. There are several different approaches to
the creation of unified field theory, the most recent is a string theory that considers the high-
dimension spaces with following its reduction (convolution) to the observable phenomenal space; the
initial approach was made by founding fathers of relativity theory A. Einstein [10-14], A. Eddington
[9],.and H. Weyl [36-38], its main idea is to construct four-dimensional continuum so that the
mathematical description of all fundamental forces can be coherently obtained from the variational

principle, this theory must contain gravitational and Maxwell’s field equations in a natural way [5-6,
43].

In [41-47] were studied the geometrical structure of the Y" space and some of its applications to the
physical problems. In the present article, we consider the amalgamations ofA. Einstein, A.
Eddington, and H. Weyl ideas in one comprehensive theory based on the geometrical structure of
space with torsion, where the connection is defined by
1 i m m 1
Iy = Eg P (gik,l + Qi — i + Gt + JimSi )+ESkF|) -
Let us recall that the classical Maxwell equations in four-dimensional representations describe the

electromagnetic phenomena of the physical world. The Maxwell electromagnetic field can be
described in terms of a four-vector potential A =(4, A, A,, A, )in the form
Fi = A;k _A<;i = A,k _A<,i +Sk’i) .
Maxwell’s equations are
Fik,l + Fli,k + Fkl,i =0

and
Fik.k — 4_72' Ji ’
Tooc
here J' = (p, J', 3%, 3) is a vector of current. The electromagnetic field in a vacuum can be express
as
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F* =0.
ik
The main idea of this article is to combine different relativistic methods into one coherent consistent
model of the electromagnet gravitational theory in the Riemannian space with torsion, which

provides a most simple possible description of gravitational and electromagnetic fields and reveals
their consubstantiality.

THE FIELD EQUATIONS INY" SPACE
Let us consider a four-dimensional continuum with the structure of Y"the manifold.
In this space, the infinitesimal parallel transportation of vector A'defines according to formula
A‘;k = Ai,k +1“ijkAj : (1)

where we denoted % = A', and can be shown that connection can be calculated by using metric
" :
and torsion tensors [33] as
1 i m m 1
Flfl = E g P (gik,l T 0k — G t gkmSIi + gImSki )+§Skﬁ. (2)

The tensor R}, is curvature tensor of Y "and can be written as [33]

Ry = RSik = Fi?),k _ri’;,p +F§kriqp _ngrﬁk
and
Ry = Rﬁik = Fi’;,k _Firli,p +r§kriqp _ngriqk ' (3)

Where the connection can be written in the form I'§ =Pj + L} or I'§j —PJ =L} .
From the definitions of covariant derivative and curvature tensor, we have an equation

i i bt oi t Qi _pi at t Qi
Sik;p;q _Sik;q;p - quistk + quksjt qutsik +qusjk;t
or
i i tei _ pt i t Qi _pi ot
Sjk;p:q _Sjk;q;p _qusjk;t - qujstk + quksjt qutsik'

EDDINGTON'S APPROACH
we assume that the connection of the space does not depend on the space metric.We compose the

scalar density as
Wg =49 glk Ric

and are applying the variation principle of the least action postulate that all variation of the functional
[ 9*Ryy-gdv

with respect to the connection equals zero, the integral not to be varied at the boundaries.
By standard calculations, we have

5J.gikRik\/_ng =
- j g*s(rp, ~Th,+ThT —-Thh)J-gadV,
the variation with respect to the connection T'7, gives
(9" =™ S +9" T}, + g™ Thy — 9", —g* TS, ) -9 (TR )dV =0
and
gntym _ gnk1k5l; + git1—~inm + gnk1—~trnk _ gntl—\nap _ glkr::(dtn — O
By contracting this equation by indices t and m, we have obtained

9", —49™  +9"Th +9™ T —g™ 2 —4g"T}, =0
and
3(g™,,+ 9" )+ ™S}, =0. 4)
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We contract (5) with tensor g,, and obtain
gntgm,m - gnmgnk,k +F2m _3ann - gnmgikrink =0 (5)

or
29" ((In(\/ﬁ)) +F2m)+ g™, +g"™Sn +g™P =0.

We introduce the notations and obtain

n 1 nm nm impn
V4 :gg Srﬁp:_(g ,m+g 1_‘im): ()
6
_ Zgnm (('n(@»m +1—~£]pj+ gnmsnr:p :_gnm ((ln(\/a))m +Fr?1pj-
The field equations [44]
Let us contract the equation
S}k:p;q _S}k;q:p - R;pj S+ R;ka}t - RcllptS;k + Sépsgk:t’ )
by the indices k, p and multiply by g*, we have
(99”8}, —9%9"S,,85 ). — 99 Sy, —9¥9 S}, SS = @
; . i : 3
= 99 Ry, Sy + 99 "Ry Sy — 99 "Ry, Sy
Let us denote
H" =g®g"s, - 9"g”"S, S, (9)
and
FP= gkpgjssgk;i- (10)
We introduce an asymmetric in any pair of indices tensor
ijk j qOdk Qi k qOiQ ] i vdick
C¥"=g"g%S,, +g™g*S), +9"g"S,, (11)
(12)
We have
HI'-F-g“g"s; Foa = g“g” Ritpsstik +9°g”" Ritka;t -g*g” Riiptsgk ’ (13)
Where F,, =S,

We are obtaining
Hik _HH = C;iikj =3 gkpgqssltoqsti —g jpgqsst)qstl;’ (14)
we have that
1

g"®g®st i —gPg®s! Sk = E(ijqs‘k"‘ —Ck"qS,‘;q), (15)
Hence

H ik _ 4 :C;iikj+ij+%(cqusgq_ckpqsgq)_ (16)

Easy to show that

Cli =-ClF =—(CF +T,C™ + T5,C™ 4+ TI,C) an

We conclude
Féicipk — Fijpcipk — %(l—*iipcipk +réiC pik ) — %SI:JC pki _ _%S;ickpi
and
recw —rico = Low (- )—lskc:jpi _lskcw
pi —tip _2 ip pi_zip _2 pq '
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Then, we have

Cl =-Cl=-Cl —%sgqckpq +%sgqc Pa_T9.CP, (18)
and we conclude
Hk _HY = C"k Fq Cpkj +FXk, (19)
. 1 5 1 J_
Since I'’ ==g. ,g* = =I'? +S?
pl lpl I pl Ip
2 Jg o

1 04—
and T' :ﬁ ax'g Jr(lnl//),I =(In(v/\/§))’l,
we obtain

H*-—HY-F*=-_C¥ (In(w\/_)) ch. (20)
Finally, we have obtained equality
(‘//ﬁ(ij—ij—ij))k=0, 1)

where Sp =¢, =3g,,7" =(Iny) .
Since

! Lgmss, g (('”(@)),m +rf;pj (22)

g|p|gIp \/— a\/|_ Fp +SIIFJ)’

and [}, _T +(Iny), (In(z//\/_)) we obtain
" :ggnmsrﬁp =—g™ ((In (\/a))m +(In(wﬁ))’m). (23)

and recalling that T}, =

The difference L}, —%Sk‘,’ is a symmetrical tensor and following Eddington’s idea, we can obtain

1 1 1 1
LEI _Esk’? =65kp‘]l +E§Ip‘1k _E gklgpq‘Jq ' (24)

where we hypothesize " =J".

THE WEYL THEORY
Contracted Riemanean tensor can be represented in the form of the sum of two tensors symmetric
and antisymmetric

R =Si + &y, (25)
Where tensors s, and &, are functions of the connection
Symmetric tensor s, corresponds to the gravitational field (can be understood as a metric tensor)
and an antisymmetric tensor a, corresponds to the electromagnetic field.

From these tensors and densities, we could compose the scalar density g and applying the

variational principle to the Hamiltonian integral and taking into considerations that the variations of
the field to vanish on the boundary of the variational domain, we could obtain

J.[aﬁ 55, + 2% 5a, ]dV =0. (26)
asik aa'lk

Let £ be the density of the electromagnetic field and let us denote
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op —g*
08y,
(27)
09 _ ik
oa, '

The tensor densities g™, f™ are the densities of gravitational and electromagnetic fields.
By variational principle, we are obtaining
nk tk
L L )

2 nt. _ nk. 5t_ tk 5n_
g m g k'm g K¥m axk 6Xk

Next, we are using duality argument and obtain

[ [aﬁag‘k L0 st jdv -0 (29)

asik aa'lk
and
op"
ik — Vik
% (30)
a *
afsoik = -

nk

The function-vector is a density of electric currentand g, =5, .

X

The conditions (27) means that the expression in the brackets under the integral (30) is an exact
differential of s, and a, as variables, similarly (30) states that the expression under the integral

symbol (29) is an exact differential of g* and f* asarguments.

CONCLUSIONS

An amalgamation of these three aspects of the description of the natural phenomena gives us a
possibility to obtain a comprehensive relativistic theory, which provides mathematical apparatuses
for the representation of physical understanding of physical phenomena of the electromagnetic and
gravitational fields from a single viewpoint and gives a possibility to deduct electromagnetic and
gravitational field equations as its special cases.
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